Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 70(4): 633-649, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543727

RESUMO

Worldwide Low Impact Developments (LIDs) are used for sustainable stormwater management; however, both the stormwater and LIDs carry microbial pathogens. The widespread development of LIDs is likely to increase human exposure to pathogens and risk of infection, leading to unexpected disease outbreaks in urban communities. The risk of infection from exposure to LIDs has been assessed via Quantitative Microbial Risk Assessment (QMRA) during the operation of these infrastructures; no effort is made to evaluate these risks during the planning phase of LID treatment train in urban communities. We developed a new integrated "Regression-QMRA method" by examining the relationship between pathogens' concentration and environmental variables. Applying of this methodology to a planned LID train shows that the predicted disease burden of diarrhea from Campylobacter is highest (i.e. 16.902 DALYs/1000 persons/yr) during landscape irrigation and playing on the LID train, followed by Giardia, Cryptosporidium, and Norovirus. These results illustrate that the risk of microbial infection can be predicted during the planning phase of LID treatment train. These predictions are of great value to municipalities and decision-makers to make informed decisions and ensure risk-based planning of stormwater systems before their development.


Assuntos
Criptosporidiose , Cryptosporidium , Criptosporidiose/epidemiologia , Humanos , Saúde Pública , Medição de Risco/métodos , Microbiologia da Água
2.
J Environ Manage ; 315: 115152, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525044

RESUMO

This study reports on a meta-analysis covering the impact of design and operating factors on published MFC performance data to inform MFC research and implementations. Factors of substrate composition, operating phase, electrode material, configuration, and pre-treatments employed were considered. The meta-analysis results indicate that dual-chamber MFCs overall achieve 18% higher COD removal and 73% higher coulombic efficiencies over that of single-chamber MFCs. MFCs using a solid operating phase achieved ˃38% higher coulombic efficiencies than those using a liquid operating phase. Statistical analyses comparing brush vs flat surface anodes revealed that brush anodes can achieve 130% higher power density than flat surface anodes. The use of a platinum catalyst was found to improve power density, as opposed to catalyst-free cathodes. However, coulombic efficiency is less likely to be influenced by the catalyst used and more likely to be dependent on the inclusion of a membrane separator. The meta-analysis results indicate that even in the presence of expensive catalysts like platinum, membrane separators are of prime importance to maintain a stable MFC operation on a long-term basis and achieve high coulombic efficiency in an MFC. Results presented in this paper outline the impact of MFC design choices on performance and can be used to guide future MFC research. These findings can be beneficial for municipalities as it provides a pathway for future MFC design and optimization by analyzing critical associations between MFC response parameters and multiple varying factors.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos , Benchmarking , Eletricidade , Eletrodos , Alimentos , Platina , Águas Residuárias/química
3.
Sci Total Environ ; 744: 140778, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32717466

RESUMO

Low Impact Developments (LIDs) employ a series of vegetative techniques to retain rainfall close to the site of origin. Although LIDs offer sustainable runoff management, these infrastructures can be considered a risk to public health due to the presence of pathogens in the runoff and human exposure to contaminated water held in and transported by LIDs. The objective of this study is to examine the disease burden of Gastrointestinal illness (GI) from exposure to LIDs at the residential, neighbourhood, and municipal levels. The authors conducted a meta-analysis of literature on three water features: (1) harvested rainwater obtained from LIDs, (2) surface water, and (3) floodwater. A set of 32 studies were systematically selected to collect values of risks of infection and expressed as the disease burden, i.e. disability adjusted life years (DALYs). The results showed that the percentage of GI illness exceeding the health guidelines were high for harvested rainwater, i.e. 22% of annual disease burden exceeded the WHO guidelines (0.001 DALYs/1000 persons), and 2% exceeded the US EPA guidelines (5.75 DALYs/1000 bathers). Among the six exposures for harvested rainwater, exposure to spray irrigation, exceeded US EPA guidelines whereas; five exposures, i.e. flushing, hosing, daily shower, spray irrigation, and children playing, surpassed the WHO guidelines. Considering LID treatment, the values of annual disease burden from all the selected barriers were below US EPA guidelines however, these values exceeded the WHO guidelines for three barriers i.e. water plaza, grass swale, and open storage ponds. These findings provide a broader perspective of the disease burden associated with LIDs and emphasise to consider the type of exposures and required treatment barriers for developing LID infrastructures in urban areas.


Assuntos
Saúde Pública , Microbiologia da Água , Criança , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Medição de Risco , Água
4.
J Environ Manage ; 235: 389-402, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708276

RESUMO

The use of Low Impact Development (LID) alternatives requires the establishment of appropriate regulations and guidelines on acceptable practices and developing consensus among stakeholders, thus assuring the rights of all water-users and for conflict resolution. This content analysis aims to examine whether stormwater regulations and guidelines have addressed the use of LID alternatives in urban settings and compares the current state of regulations in the context of Canadian provinces and territories., A list of eight core criteria relevant to the implementation of LID has been identified and an ordinal scale ranging from 1 to 6 is proposed to track the progress towards LID-friendly regulations in each province. Furthermore, based on comparative assessment, Canadian provinces are categorized into three groups: 'highly, moderately, and slightly LID-friendly' to project a broad view of the current state of regulations required to promote LID alternatives. . Results show that LID has become the mainstream technology for stormwater management in Alberta, British Columbia, Ontario, and Quebec, which are categorized as 'highly LID-friendly' provinces. The provinces where LID alternatives have gained considerable acceptance are categorized as 'moderately LID-friendly', which include Manitoba, Newfoundland and Labrador, Nova Scotia, Prince Edward Island, and Saskatchewan. Lastly, the province of New Brunswick is categorized as 'slightly LID-friendly', because of very limited use of LID alternatives in the stormwater management regulations. These findings of this content analysis can be of significant value to strengthen provincial/territorial regulations and extend the benefits of LID in stormwater quality management and sustainable water management.


Assuntos
Conservação dos Recursos Naturais , Abastecimento de Água , Alberta , Colúmbia Britânica , Canadá , Terra Nova e Labrador , Ontário , Quebeque , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...